Development and Characterization of a Remanufactured Motorcycle Clutch Hub from End-of-Life Aluminium Alloy
DOI:
https://doi.org/10.70112/arme-2024.13.1.4238Keywords:
Reverse Engineering, End-Of-Life (EOL) Aluminium Alloy, Transient Thermal Analysis, Fourier Transform Infrared (FTIR) Spectroscopy, Fatigue FailureAbstract
This study aims to employ reverse engineering in the development of the Yamaha CY 80 motorcycle clutch hub using end-of-life (EOL) aluminium alloy obtained from automotive vehicle scraps. The remanufactured motorcycle clutch hub underwent characterization and transient thermal analysis by integrating the geometric and structural features of the clutch hub. The EOL aluminium was thoroughly washed with a sodium hydroxide (NaOH) solution, cleaned with running water, and dried under sunlight to remove impurities trapped on the metal surfaces. The EOL aluminium alloy was melted in a gas furnace, and the molten metal was cast into the clutch hub using a permanent mold designed with the geometric features and characteristics of the Yamaha CY 80 motorcycle clutch hub. The EOL aluminium alloy was characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The remanufactured CAD model of the Yamaha CY 80 motorcycle clutch hub was subjected to transient thermal analysis using ANSYS Workbench to predict the thermal behavior of the clutch hub during operation. The FTIR spectra exhibited the following distinctive bands: Al-O stretching modes in octahedral and tetrahedral structures, as well as symmetric bending of Al-O-H, with wavenumbers between 340 and 3131 cm-1 for -OH bonds and between 2109 and 1688 cm-1 for H-O-H bonds. The SEM-EDS micrographs indicated that the two main elements were bromine and silicon. Results from the transient thermal analysis indicated that the minimum and maximum temperatures were 40.109 °C and 250.09 °C within a time frame of 240 seconds. The maximum total heat flux was 30,271,000 W/m2. The compressive yield strength and tensile yield strength obtained in this study were 280 MPa, while the ultimate tensile strength was measured at 310 MPa. The alternating stress levels ranged from 62.05 MPa to 275.8 MPa. This study established that the material is susceptible to fatigue failure, as the alternating stress levels were below the material’s yield strength of 280 MPa.
References
H. Patil and P. V. Jeyakarthikeyan, “Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS,” IOP Conf. Ser. Mater. Sci. Eng., vol. 402, no. 1, p. 012065, Aug. 2018, doi: 10.1088/1757-899X/402/1/012065.
X. Liu, Y. Wang, L. Zhao, Y. Xing, and H. Guo, “The analysis of structural strength of UD clutch hub assembly,” Appl. Mech. Mater., vol. 303-306, pp. 2754-2757, 2013, doi: 10.4028/www.scientific.net/amm.303-306.2754.
X. T. Liu, Y. S. Wang, L. H. Zhao, Y. F. Xing, and H. Guo, “The analysis of structural strength of UD clutch hub assembly,” Appl. Mech. Mater., vol. 303-306, pp. 2754-2757, 2013, doi: 10.4028/www.scientific.net/amm.303-306.2754.
C. Liu, X. Liu, H. Hu, and L. Zhao, “Simulation research on structural strength of the hub plate,” in 2008 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2008, pp. 1310-1312, 2009, doi: 10.1109/ROBIO.2009.4913189.
C. Gul, M. O. Genc, and A. Durmus, “Numerical estimating the shock strength of automobile clutch disc hub,” in Proc. of the Sixth International Conference on Advances in Mechanical and Robotics Engineering-AMRE 2017, Institute of Research Engineers and Doctors, LLC, Dec. 2017, pp. 16-19, doi: 10.15224/978-1-63248-140-5-37.
A. Karaduman, Z. R. Aktaşgil, M. O. Genc, and M. I. Karamangil, “Investigation of clutch hub strength with various geometries under variable torque conditions,” Sigma J. Eng. Nat. Sci., vol. 38, no. May, pp. 111-122, 2020.
D. Meng, C. Zhu, X. Zhao, and S. Zhao, “Applying low-frequency vibration for the experimental investigation of clutch hub forming,” Materials, vol. 11, no. 6, p. 928, May 2018, doi: 10.3390/MA11060928.
Seung Gyu, Y.-C. Park, and J.-H. Park, “Optimization of pre-form for manufacturing of automobile drum clutch hub products using Taguchi method,” J. Korean Soc. Manuf. Process Eng., vol. 9, no. 6, pp. 101-108, 2010. Accessed: Jan. 20, 2022. [Online]. Available: https://www.koreascience.or.kr/article/JAKO201007750337635.pdf.
D. H. Ko et al., “Roll die forming process for manufacturing clutch hub in automotive transmission,” Trans. Mater. Process., vol. 20, no. 2, pp. 154-159, 2011. Accessed: Jan. 20, 2022. [Online]. Available: https://www.koreascience.or.kr/article/JAKO201111034723735.pdf.
R. Purohit, P. Khitoliya, and D. K. Koli, “Design and finite element analysis of an automotive clutch assembly,” Procedia Mater. Sci., vol. 6, pp. 490-502, 2014, doi: 10.1016/J.MSPRO.2014.07.063.
C. Y. Lee, I. S. Chung, and Y. S. Chai, “Finite Element Analysis of an Automobile Clutch System,” Key Eng. Mater., vol. 353-358, pp. 2707-2711, Sep. 2007, doi: 10.4028/www.scientific.net/KEM.353-358. 2707.
N. A. Barve and M. S. Kirkire, “Analysis of Single Plate Friction Clutch Using Finite Element Method,” Int. J. Adv. Sci. Res. Eng. Trends, vol. 2, no. 11, pp. 273-276, 2017.
S. G. Dhumale and S. G. Kamble, “Design and Structural Analysis of Clutch Hub Using CAD,” Int. J. Innov. Eng. Sci., vol. 6, no. 2, pp. 17-20, 2021, doi: 10.46335/IJIES.2021.6.2.4.
S. Pradhan, B. Biswal, and G. A. Sharma, “Finite Element Analysis of Dog Clutch Plate Using Numerical Methods,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 8, no. 8, pp. 612-622, 2021, doi: 10.17148/IARJ SET.2021.88101.
O. I. Abdullaha, J. Schlattmanna, and A. M. Al-Shabibib, “Stresses and Deformations Analysis of a Dry Friction Clutch System,” Tribol. Ind., vol. 35, no. 2, pp. 155-162, 2013.
H. N. Madhuraj and M. R. Bharath, “Modeling and Simulation of Clutch Pressure Plate Casting Using Alternate Materials,” AIP Conf. Proc., vol. 1943, no. 1, p. 020044, Apr. 2018, doi: 10.1063/1.5029620.
J. H. Park, S. G. Kim, Y. C. Park, and X. G. Song, “Shape Design of the Deep-Drawing Preform for Manufacturing of Automobile Drum Clutch Hubs,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 226, no. 4, pp. 1016-1024, Apr. 2011, doi: 10.1177/0954406211417495.
A. K. Khandagale, “Design and Manufacture a Pressure Die Casting Tool for the Manufacturing of the Clutch Hub,” J. Publ. Int. Res. Eng. Manag., vol. 5, no. 9, pp. 1-6, 2022.
G. Mahendran, M. A. S. Balaji, D. Dinakaran, and A. Eakambaram, “Optimal Process Parameter Selection for Pressure Die Casting of Clutch Hub Using Desirability Approach,” AIP Conf. Proc., vol. 2395, no. 1, p. 040011, Oct. 2021, doi: 10.1063/5.0069968.
Z. Liu, J. Zhou, W. Feng, and Y. Chen, “Modeling, Analysis, and Multi-objective Optimization of Cold Extrusion Process of Clutch Outer Gear Hub Using Response Surface Method and Meta-heuristic Approaches,” Int. J. Adv. Manuf. Technol., vol. 116, no. 1-2, pp. 229-239, Sep. 2021, doi: 10.1007/s00170-021-07451-2.
R. Jojith and N. Radhika, “Investigation of Mechanical and Tribological Behaviour of Heat-Treated Functionally Graded Al-7Si/B4C Composite,” Silicon, vol. 12, no. 9, pp. 2073-2085, Sep. 2020, doi: 10.1007/s12633-019-00294-3.
H. Mahdy, T. Enab, A. Galal, and M. Samuel, “Experimental Study of Manufacturing Aluminium Alloy Pistons Using Vertical Centrifugal Casting Process,” Int. J. Sci. Eng. Res., vol. 7, no. 8, pp. 198-203, 2016. Accessed: Sep. 01, 2019. [Online]. Available: file:///C:/Users/edumg bemena/Documents/PISTON_PAPERS/IJSERPaper--I086678---8-2016.pdf.
N. Radhika and R. Raghu, “Characterization of Mechanical Properties and Three-body Abrasive Wear of Functionally Graded Aluminium LM25/Titanium Carbide Metal Matrix Composite,” Materwiss. Werksttech., vol. 48, no. 9, pp. 882-892, Sep. 2017, doi: 10.1002/ mawe.201700559.
C. O. Mgbemena and I. Emovon, “Fabrication and Assessment of a Motorcycle Piston Using the Traditional Sand Casting Method,” Covenant J. Eng. Technol., vol. 4, no. 1, Jun. 2020. Accessed: Aug. 18, 2022. [Online]. Available: https://journals.covenantuniversity.edu.ng/index.php/cjet/article/view/2068.
C. O. Mgbemena and C. E. Mgbemena, “Productization,Characterisation and Analysis of RX 100 Motorcycle Piston from Endof Life Aluminium Pistons,” FUPRE J. Sci. Ind. Res., vol. 3, no. 2,pp. 44-56, 2019. Accessed: Aug. 18, 2022. [Online]. Available:https://journal.fupre.edu.ng/index.php/fjsir/article/view/62.
S. V. Sujith, M. M. Mahapatra, and R. S. Mulik, “An investigation into fabrication and characterization of direct reaction synthesized Al-7079-TiC in situ metal matrix composites,” Arch. Civ. Mech. Eng.,vol. 19, no. 1, pp. 63-78, Mar. 2019, doi: 10.1016/j.acme.2018.09.002.
J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, and Z. Fan, “Microstructureand mechanical properties of SiCnp/Al6082 aluminium matrix composites prepared by squeeze casting combined with stir casting,”J.Mater. Process. Technol., vol. 283, p. 116699, Sep. 2020, doi: 10.1016/j.jmatprotec.2020.116699.
M. F. Alam, “Squeeze casting as alternative fabrication process forcarbon fiber reinforced aluminium matrix composites,” Ph.D.dissertation, Univ. Ottawa, Ottawa, ON, 2013. Accessed: Sep. 02,2019. [Online]. Available: https://pdfs.semanticscholar.org/be93/2fbd788197b9983a32bfe8c6e94eb01d772b.pdf
T. R. Vijayaram, S. Sulaiman, A. M. S. Hamouda, and M. H. M.Ahmad, “Fabrication of fiber reinforced metal matrix composites by squeeze casting technology,” J. Mater. Process. Technol., vol. 178, no. 1-3, pp. 34-38, Sep. 2006, doi: 10.1016/j.jmatprotec.2005.09.026.
A. K. Singh, S. Soni, and R. S. Rana, “A critical review on synthesisof aluminium metallic composites through stir casting: Challenges and opportunities,” Adv. Eng. Mater., vol. 22, no. 10, p. 2000322, Oct. 2020, doi: 10.1002/adem.202000322.
M. Senthil Kumar, R. V. Mangalaraja, R. Senthil Kumar, and L. Natrayan, “Processing and characterization of AA2024/Al2O3/SiC reinforcements hybrid composites using squeeze casting technique,”
Iran. J. Mater. Sci. Eng., vol. 16, no. 2, pp. 55-67, 2019, doi: 10.22068/ijmse.16.2.55.
A. Ramanathan, P. K. Krishnan, and R. Muraliraja, “A review on theproduction of metal matrix composites through stir casting - Furnacedesign, properties, challenges, and research opportunities,” J. Manuf. Process., vol. 42, pp. 213-245, Jun. 2019, doi: 10.1016/j.jmapro.2019.04.017.
P. Samal, R. K. Mandava, and P. R. Vundavilli, “Dry sliding wearbehavior of Al 6082 metal matrix composites reinforced with red mudparticles,” SN Appl. Sci., vol. 2, no. 2, p. 313, Feb. 2020, doi: 10.1007/s42452-020-2136-2.
S. Asif, T. Nataraj, and D. V. Rao, “Fabrication, characterization, andfinite element analysis of aluminium-based metal matrix compositesfor automobile clutch hub,” Int. J. Innov. Technol. Res., vol. 5, no. 2, pp. 5670-5672, 2017.
C. Fenghong, C. Chang, W. Zhenyu, T. Muthuramalingam, and G. Anbuchezhiyan, “Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites,” Silicon, vol. 11, no. 6, pp. 2625-2632, Dec. 2019, doi: 10.1007/s12633-018-0051-6.
K. Ravikumar, K. Kiran, and V. S. Sreebalaji, “Characterization ofmechanical properties of aluminium/tungsten carbide composites,”Meas. J. Int. Meas. Confed., vol. 102, pp. 142-149, May 2017, doi: 10.1016/j.measurement.2017.01.045.
P. Samal, P. R. Vundavilli, A. Meher, and M. M. Mahapatra,“Fabrication and mechanical properties of titanium carbide reinforced aluminium composites,” in Mater. Today: Proc., 2019, pp. 2649-2655, doi: 10.1016/j.matpr.2019.07.125.
D. Dey, A. Bhowmik, and A. Biswas, “Effect of SiC content on mechanical and tribological properties of Al2024-SiC composites,”Silicon, 2020, doi: 10.1007/s12633-020-00757-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Centre for Research and Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.