
Asian Journal of Mechanical Engineering  © Centre for Research and Innovation 
ISSN: 2249-6289 (P); 3049-1886 (E)  www.crijournals.org 
Vol.14 No.2, 2025, pp.16-19  DOI: https://doi.org/10.70112/arme-2025.14.2.4302

Finite Topological Spaces: Coarser and Finer Structures with 
Connections to Graph Theory 
S. H. Manohar1  and H. S. Boregowda2*  

1,2*Department of Studies and Research in Mathematics, Jnanasiri Campus, Tumkur 
University,Tumakuru,Karnataka,India 

1Department of Mathematics,GFGC Madhugiri, Karnataka, India 
E-mail:manoharsh146@gmail.com

*Corresponding Author: bgsamarasa@gmail.com
(Received 20 June 2025; Revised 20 July 2025; Accepted 28 August 2025; Available online 5 September 2025) 

Abstract - Finite topological spaces provide a tractable 
setting for studying fundamental topological properties and 
their interactions with other mathematical structures. In this 
paper, we focus exclusively on finite topological spaces, 
emphasizing the role of coarser and finer topologies, as well as 
the extremal cases of discrete and indiscrete topologies. Special 
attention is given to T0 (Kolmogorov) spaces, which are central 
in the finite context, since any finite T1 space is necessarily 
discrete. We also highlight the significance of the Sierpiński 
space as the smallest non-discrete and non-indiscrete topology, 
noting its importance as a classifying space for open sets and 
its connections to semantics and computational theory. The 
study further situates finite topological spaces within ongoing 
research that links topology and graph theory. Various 
constructions of topologies derived from graph-theoretic 
concepts are reviewed, including those based on closed 
neighborhoods, subbases, open hop neighborhoods, and 
monophonic eccentric neighborhoods. These approaches have 
led to characterizations of graphs that induce discrete or 
indiscrete topologies, as well as to the development of 
compatible topologies where graph connectivity corresponds to 
topological connectedness. Recent investigations into discrete 
topological graphs, domination in discrete topological spaces, 
and special intersection graphs are also discussed. Collectively, 
these works demonstrate the growing interplay between finite 
topology and graph theory and motivate further exploration of 
their combined structures and applications. 
Keywords: Finite Topological Spaces, T0 (Kolmogorov) Spaces, 
Graph-Induced Topologies, Discrete and Indiscrete 
Topologies, Sierpiński Space 

I. INTRODUCTION

A topological space with a finite underlying point set is 
called a finite topological space. In this paper, we 
consider only finite topological spaces. Let X be a finite 
set and T1 and T2 be two topological spaces defined on 
X; then T1 is a coarser topology than T2 if T1 ⊆ T2, and 
T1 is a finer topology than T2 if T2 ⊆ T1. The discrete 
topology is the finest topology that can be given on a set 
X, and the indiscrete topology is the coarsest topology that 
can be defined on a point set X. A space X with 
topology T where there is at least one neighborhood for 
each pair of distinct points in X is called a T0 space or 
Kolmogorov space. A Sierpinski space is the smallest 
topological space that is neither discrete nor indiscrete. This 
space has two points, but only one of them is closed. It is 
the smallest example of a topological space that is neither 

discrete nor trivial. Because the Sierpiń ski space is the 
classifying space for open sets in the Scott topology, it has 
significant connections to semantics and computational 
theory. General references and definitions may be found 
in [1], and an excellent guide to finite topological spaces 
is given by Stong[2]. When finite topological spaces are 
concerned, T0 spaces are of utmost importance. T1 space 
is discrete in finite topological spaces. Diesto and 
Gervacio [3] established topologies using closed 
neighborhoods as the basis for the topology. Conoy and 
Lemence used the subbases to do more research.  

In 2019, Nianga and Canoy [4] created a topology by 
utilizing the open hop neighborhood of a vertex set. In 
2021, Gamorez and Canoy [5] constructed a topology using 
monophonic eccentric neighborhoods on a vertex set of the 
graph and further characterized the graphs that induce 
discrete and indiscrete topologies. Lemence [6] studied 
the topologies generated by a few special graphs and also 
characterizing the graphs that provide topological spaces 
that are discrete and indiscrete. In 1992, Prea[7] defined a 
topology compatible with a given graph such that an 
induced subgraph is connected if and only if it is associated 
with this topology. In recent years, more attempts have 
been made to connect topology and graph theory. studies 
discrete topological graphs and the domination in discrete 
topological space [8, 9]. Omran et al. [10] defined another 
class of graphs called special intersection graphs in 
topological graphs. 

II. TOPOLOGY INDUCED BY
THE GRAPH 

Let G be the graph and V be the vertex set of graph 
G; here we consider the point set X = V (G). Let IG 
be collection of topologies on X such that T ∈ IG iff 
for any x adjacent to y in G then ∃ an open set G in X 
such that x ∈ G and y ∈/ G or x ∈/ G and y ∈ G. We 
call this collection IG a section of the Graph induced 
topology of the graph G. The minimal topology 
(Minimal in terms of coarser, i.e.,T is minimal if there 
does not exist any topology T ′ ∈ IG such that T ′ ⊂ T .) 
T is called Graph, the induced topology of the graph 
G. Let G be any graph of order n. Then clearly, the
discrete topology on the point set containing n elements
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is always a member of IG and hence IG is always 
nonempty. Hence, given a graph G, we always get a 
topology induced by the graph. 

T0 spaces are foundational when it comes to separation 
axioms, but T0 spaces are more significant in finite 
topological spaces, as T1 spaces are discrete. Discrete and 
indiscrete topologies are two extreme topological spaces. 
Therefore, we define the topology induced by the graph in 
such a way that the non-trivial graphs of finite order lie well 
within the two extremes. This gives us a wealth of topics 
to study. For Example: G be the graph given below. 

G 

X = {1, 2, 3, 4} be the point set and T = {Φ, {1}, {1, 
4}, X} is the topology Induced by the graph. 

Proof: Let IG as a collection of topologies induced by 
the graph G. Clearly, T is a topology. We need to show 
T is the minimal topology in IG. Let T ′ be any topology 
strictly coarser than T , i.e., T ′ ⊂ T . Suppose T ′ = 
{Φ, {1}, X}. Since {3, 4} ∈ E(G) but there does not 
exists any open set O ∈ T ′ such that 3 ∈ O and 4 ∈/ 
T ′ ∈/ IG. O or 3 ∈/  O and 4 ∈ O. Hence exists 
anyopen set O ∈ T ′ such that 3 ∈ O and 4 ∈/ O or 3 
∈/  O and 4 ∈ O. Hence T ′ ∈/ IG.  

If suppose T ′ = {Φ, {1, 4}, X}. Since {1, 4} ∈ E(G) 
but there does not exists any open set O ∈ T ′ such 
that 1 ∈ O and 4 ∈/ O or 1 ∈/ O and 4 ∈ O. Hence T 
′ ∈/ IG. If suppose T ′ = {Φ, X}. Since {1, 4} ∈ E(G) 
but there does not exists any open set O ∈ T ′ such that 
1 ∈ O and 4 ∈/ O or 1 ∈/ O and 4 ∈ O. Hence T ′ ∈/ IG. 
Hence T is the minimal topology which is in IG and 
hence T is the topology induced by the graph G. 

III. TOPOLOGY INDUCED BY SOME
STANDARD CLASS OF GRAPHS

A. Theorem 3.1.

X = {1, 2, .., n} be the point set and T = {Φ, X} be the 
indiscrete topology induced by the graph G. Then G 
must be a null graph. 

Proof: Let us assume that G is not a null graph. Then 
∃ an edge e = xy in G, since T is the topology induced 
by the graph G ∃ an open set Q in T ∋: x ∈ Q and y ∈/ 
Q or x ∈/ Q and y ∈ Q. Hence Q ̸= ϕ and Q ̸= X, and Q 

is an open set in X, which contradicts the fact that T is 
an indiscrete topology. Hence, G must be a null graph. 

B. Theorem 3.2.

Let G with vertex set V (G) = {1, 2, .., n} be a null 
graph then IG consists of all topology with point set X = 
V (G). 

Proof: Let X = {1, 2, .., n} be the point set. T be any 
topology defined on X since G has no edges T ∈ IG and 
indiscrete topology is contained in every topology. 
Hence, the indiscrete topology will be the topology 
induced by the null graph. 

C. Theorem 3.3.

P5 
Let G = Kn represent the complete graph of order n, 
then the collection of graph induced topologies IG consists 
of only T0 spaces. Moreover, the topology induced by the 
graph G is a T0 or Kolmogorov space. 

Proof: Let T ∈ IG be arbitrary, since G is complete 
graph for any p ̸= q, p is adjacent to q hence ∃ an 
open set Q ∈ T ∋: i ∈ Q and j ∈/ Q or i ∈/ Q and j 
∈ Q. Thus T is a T0 space. Given a graph G, any two 
topologies induced by the graph G may not be 
homeomorphic. For example: Consider the path graph 
G with 5 vertices. Then T1 = {ϕ, {1, 3, 5}, X} and T2 
= {ϕ, {2, 4}, X} are topology induced by the graph G 
which are not homeomorphic to each other. 

D. Theorem 3.4.

G = Kn be a complete graph of order n then for any T 
∈ IG ∃ an open set with a single element. 

Proof: V (G) = X = {1, 2, .., n} is the point set and 
G is complete graph. T ∈ IG be arbitrary, Let Q1 ∈ 
T if Q1 is singleton set then we are done if not say i, j 
∈ Q1, since G is complete i is adjacent to j and hence ∃ 
an open set Q′ ∋: i ∈ Q′ and j ∈/ Q′ or i ∈/ Q′ and j ∈ Q′. 
Consider Q2 = Q1 ∩ Q′ . Clearly, Q2 is a non-empty 
proper subset of Q1. If Q2 is singleton then we are done 
if not then ∃ k, l ∈ Q2 ∋: k is adjacent to l hence ∃ an 
open set ∈ T ∋: k ∈ Q′ and l ∈/   ′ or k ∈/′ and l ∈ Q′ 

Now consider Q3 = Q2 ∩ Q′ clearly Q3 is a non empty 
proper subset of Q2. If Q3 is a singleton set, then we are 
done; if not, continue the process. Since T is a finite 
topological space, the process must terminate after a 
finite number of times, resulting in a singleton set. 

Corollary 3.4.1.  
If T is a finite T0 space, then ∃ an open set with a 

1 
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single element. Proof. Proof follows from Theorems 3.3 
and 3.4 

E. Theorem 3.5.

G be the graph and T be a topology induced by the 
graph G. Then Tc defined by Tc = {G ⊆ X | G = Oc 

where O ∈ T } is also a topology induced by the same 
graph G. 
Proof: Firstly Tc is also a topology since Φ, X ∈ T =⇒ 
Φc = X, Xc = Φ ∈ Tc. Tc is the collection of closed sets 
of T . Hence, finite union and finite intersection of 
closed sets are closed, and Tc is a topology on X. Next 
we claim the following (i) Tc ∈ IG (ii) Tc is 
minimal. Proof of (i) For any edge {x, y} ∈ E(G) 
since T is a topology induced by the graph G ∃ an 
open set say O ∈ T ∋: x ∈ O and y ∈/ O or x ∈/ O and 
y ∈ O. If x ∈ O and y ∈/ O then x ∈/ Oc and y ∈ Oc 
hence Tc ∈ IG. If x ∈/ O and y ∈ O then x ∈ Oc and y 
∈/ Oc hence Tc ∈ IG.  

Proof of (ii) Assume Tc is not minimal then ∃ a 
topology T1 ∈ IG ∋: T1 ⊂ Tc then  
Tc ⊂ (Tc)c  =⇒  Tc ⊂ T  

Tc ∈ IG by claim (i) which contradicts the fact that T is 
the minimal topology. Hence, Tc 1, 1 is also a topology 
induced by the graph G. 

Corollary 3.5.1. 

If T is a T0 space, then Tc is also a T0 space. Proof. 
Proof follows from Theorems 3.3 and 3.5 

F. Theorem 3.6.

If G is a bipartite graph that has bipartitions A and 
B, then T = {Φ, A, X} is the topology induced by the 
graph G. 

Proof: Clearly T is a topology, For any edge say 
{x, y} ∈ E(G) since G is bipartite say x ∈ A and y 
∈ B, if x ∈ A then y ∈/ A, hence T ∈ IG and T is 
minimal, if not then ∃ a topology T ′ ⊂ T ∋: T ′ ∈ IG 
then T ′ = {Φ, X} hence for any edge {x, y} ∈ E(G) 
there does not exists any open set O in T such that x ∈ 
O and y ∈/ O or x ∈/ O and y ∈ O this leads a 
contradiction. Hence, T is minimal and T is the 
topology induced by the graph G is bipartite. 

Corollary 3.6.1. 

If G is bipartite with bipartition A and B then T1 
= {Φ, A, X} and T2 = {ϕ, B, X} are topology induced 
by the graph G where X = A ∪ B. Proof. The proof 
follows from Theorem 3.5 and Theorem 3.6 

G. Theorem 3.7.

Let G = C2n+1 be a cyclic graph with edges connecting 
1−2−3...2n−2n+1−1 then T = {Φ, {1}, A, X} where A 
= {1, 3, 5, ..., 2n + 1}. 

Proof: Clearly, T is a topology. For any edge e = {i, 

j} ∈ E (C2n+1) other than {1, 2n + 1}, one vertex is
odd and another is even; therefore, the odd vertex ∈ A
and the even vertex do not. For the edge {1, 2n + 1}1
∈ {1} and 2n + 1 ∈/ {1} hence T ∈ IG. Next, we claim
that T is minimal. If not ∃ a topology T ′ ∈ IG
such that T ′ ⊂ T then the possibility for T ′ is T ′ =
{Φ, X} or T ′ = {Φ, {1}, X} or T ′ = {Φ, A, X}. If
T ′ = {Φ, X} then for any edge e = {x, y} ∈ E(G)
then there does not exists any open set O in T ′ such
that x ∈ O and y ∈/ O.If T ′ = {Φ, {1}, X} then for
edge e = {2, 3} ∈ E(G) then there does not exists any
open set O in T ′ such that 2 ∈ O and 3 ∈/ O. If T ′ =
{Φ, A, X} then for edge e = {1, 2n + 1} ∈ E(G) then
there does not exist any open set O in T ′ such that 1 ∈
O and 2n + 1 ∈/ O. Hence T is the minimal topology in
IG and T is the topology induced by the graph G.

H. Theorem 3.8.

G be a tripartite graph with tripartition A, BandC then 
the topology induced by the graph G is T = {ϕ, A, A 
∪ B, X} 

Proof: Clearly, T is a topology. Since T is a tripartite 
graph, we have 3 kinds of edges. first kind whose end 
vertices are in A and B, second kind whose end 
vertices are in B and C, third kind whose end vertices 
are in A and C. For any edge e = {x, y} in the first 
kind, say x ∈ A and y ∈ B Hence ∃ an open set A ∈ T 
∋: x ∈ A and y ∈/ A. If e = {x, y} is an edge of the 
second kind, then x ∈ B and y ∈ C then we take Q = 
A ∪ B such that x ∈ Q and y ∈/ Q. If e = {x, y} is an 
edge of the third kind, then x ∈ Q and yinC then we 
take Q = A such that x ∈ Q and y ∈/ Q. Hence T ∈ IG. 
Now we will show T is minimal, Assume that T is not 
minimal then ∃ T ′ ∈ IG such that T’ is proper subset 
of T then possible T ′ are T ′ = {Φ, X} or T ′ = {Φ, 
A, X} or T ′ = {Φ, A ∪ B, X} If T ′ = {Φ, X} then 
for any edge e = {x, y} ∈ E(G) then there does not 
exists any open set Q in T ′ such that x ∈ Q and y ∈/ 
Q. If T ′ = {Φ, A, X} then for any edge e = {x, y} ∈
E(G) of second kind then x ∈ B and y ∈ C then there
does not exists any open set Q in T ′ such that x ∈ Q
and y ∈/ Q. If T ′ = {Φ, A ∪ B, X} then for any edge e
= {x, y} ∈ E(G) of first kind then x ∈ B and y ∈ C
then there does not exists any open set Q in T ′ such that
x ∈ Q and y ∈/ Q. Hence T is the minimal topology in
IG and T is the topology induced by the graph G.

I. Theorem 3.9.

Let Let G be a graph and TG = {Φ, X, A1, A2, ..., Ak} be 
the graph induced topology of graph G on point set X = 
V (G) then T = TG ∪ {Y } is the graph induced topology 
of graph G + {v} where Y = X ∪ {v}. 

Proof: Here we claim the following. (i) T is 
topology on Y . (ii) T ∈ IG+{v}. (iii) T is minimal 
topology. Proof of claim (i) Φ and Y are in T . Let G 
and H be any two open sets in T 
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case 1: If Q1 = Φ and Q2 be any open set then Q1 ∪ Q2 
= Q2 and Q1 ∩ Q2 = Φ both are trivially in T . 
case 2: If Q1 = Ai and Q2 = Aj then Q1 ∪ Q2 and Q1 ∩ 
Q2 are in TG since TG is a topology and hence Q1 ∩ Q2 
are in T . 
case 3: If Q1 = X and Q2 = Ai then Q1 ∪ Q2 = X and 
Q1 ∩ Q2 = Q2 and hence in T . case 4: If Q1 = Y and 
Q2 = Ai then Q1 ∪ Q2 = Y and Q1 ∩ Q2 = Q2 and 
hence in T . case 5: If Q1 = X and Q2 = Y then Q1 ∪ 
Q2 = Y and Q1 ∩ Q2 = X and hence in T . Which 
proves claim (i). Proof of claim (ii) Let e = {x, y} ∈ 
E(G + {v}) if e is an edge in G and TG is the 
topology induced by the graph G ∃ an open set O ∈ 
T such that x ∈ O and y ∈/ O or x ∈/ O and y ∈ O and 
O ∈ T we are done.  

If e is an edge with one vertex v and another vertex, 
say x in V (G), then choose an open set as X x ∈ X and v 
∈/ X. hence for any edge in E(G + {v}) we can find an 
open set O with one vertex in O and other not in O hence 
proof the claim (ii). proof of claim (iii) Suppose assume 
that T is not minimal then ∃ a topology T ′ ∈ IG+{v} 
such that T ′ ⊂ T . Consider A = {A1, A2, ..., Ak}. 
Suppose T ′ = {Φ, Y, X} then for any edge e = {x, y} ∈ 
E(G + {v}) then there does not exists any open set O in 
T ′ such that x ∈ O and y ∈/ O or x ∈/ O and y ∈ O thus 
leading a contradiction. 

Suppose T ′ = T − {X} then clearly T ′ is a topology 
and for any i ∈ V (G), v is adjacent to i in G+{v} then 
there exsits an open set O ∈ T ′ such i ∈ O and v ∈/ 
O or i ∈/ O and v ∈ O for all i ∈ V (G) since Y is the 
only open set which contain v, Y also contain all 
vertices of V (G). Hence Y ̸= O and O must be 
equal to some Ai and i ∈ Ai for each i ∈ V (G). And 
X = ∪i∈V (G)Ai hence X ∈ T ′ leading to contradiction. 
Let T ′ = {Φ, X} ∪ A′ where A′ ⊂ A now consider T ′ 
= {Φ, X} ∪ A′ then T ′ is a topology and for any 
edge e = {x, y} ∈ E(G) =⇒ e{x, y} ∈ E(G + {v}) 
also and T ′ is topology induced by the graph G + {v} 
hence ∃ open set O ∈ T ′ such that x ∈ O and y ∈/ O or 
x ∈/ O and y ∈ O and hence O ∈ T ′ and hence T ′ ∈ IG 
which contradicts the minimality of TG. Hence the 
proof. 

 Corollary 3.9.1.  

Let G be the graph and T = {Φ, X, A1, A2, ..., Ak} be the 
topology induced by the graph G then the topology 
induced by the graph G + Kn will be given by Tn = {Φ, X 
∪ {v1}, X ∪ {v1, v2}, ..., X ∪ {v1, v2, ..., vn}, X, A1, A2, 
..., Ak} where V (Kn) = {v1, v2, ..., vn}. 

Proof: By theorem 3.9 if T = {Φ, X, A1, A2, ..., Ak} is 
the topology induced by the graph G then T1 = {Φ, X 
∪ {v1}, X, A1, A2, ..., Ak} is the topology induced by the 
graph G + K1 where V (K1) = {v1} by induction we can 
say that the topology induced by the graph (G + K1) + 
K1 is T2 = {Φ, X ∪ {v1}, X ∪ {v1, v2}, X, A1, A2, ..., 

Ak} where V (Kn) = {v1, v2, ..., vn} and (G + K1) + K1 
= (G + K2) then continue the process after n steps we 
get that the topology induced by the graph G + Kn is 
given by Tn = {Φ, X ∪ {v1}, X ∪ {v1, v2}, ..., X ∪ 
{v1, v2, ..., vn}, X, A1, A2, ..., Ak} where V (Kn) = {v1, 
v2, ..., vn}. 

IV. CONCLUSION
 

In this paper, we introduced and studied a notion of 
topology induced by a graph on a finite vertex set, 
emphasizing the role of minimal topologies that 
respect adjacency relations in the underlying graph. 
We characterized the induced topologies for several 
standard classes of graphs, including null graphs, 
complete graphs, bipartite graphs, odd cycles, tripartite 
graphs, and graph extensions via joins. Overall, this 
work highlights a clear and constructive bridge 
between finite topology and graph theory. The 
framework developed here not only unifies several 
existing constructions of graph-based topologies but 
also opens avenues for further research. 
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