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Abstract - Finite topological spaces provide a tractable
setting for studying fundamental topological properties and
their interactions with other mathematical structures. In this
paper, we focus exclusively on finite topological spaces,
emphasizing the role of coarser and finer topologies, as well as
the extremal cases of discrete and indiscrete topologies. Special
attention is given to To (Kolmogorov) spaces, which are central
in the finite context, since any finite Ti space is necessarily
discrete. We also highlight the significance of the Sierpinski
space as the smallest non-discrete and non-indiscrete topology,
noting its importance as a classifying space for open sets and
its connections to semantics and computational theory. The
study further situates finite topological spaces within ongoing
research that links topology and graph theory. Various
constructions of topologies derived from graph-theoretic
concepts are reviewed, including those based on closed
neighborhoods, subbases, open hop neighborhoods, and
monophonic eccentric neighborhoods. These approaches have
led to characterizations of graphs that induce discrete or
indiscrete topologies, as well as to the development of
compatible topologies where graph connectivity corresponds to
topological connectedness. Recent investigations into discrete
topological graphs, domination in discrete topological spaces,
and special intersection graphs are also discussed. Collectively,
these works demonstrate the growing interplay between finite
topology and graph theory and motivate further exploration of
their combined structures and applications.

Keywords: Finite Topological Spaces, To (Kolmogorov) Spaces,
Graph-Induced  Topologies, Discrete and Indiscrete
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I. INTRODUCTION

A topological space with a finite underlying point set is
called a finite topological space. In this paper, we
consider only finite topological spaces. Let X be a finite
set and 71 and 7> be two topological spaces defined on
X; then T) is a coarser topology than 75 if 77 € T, and
T is a finer topology than 7, if 7> & T). The discrete
topology is the finest topology that can be given on a set
X, and the indiscrete topology is the coarsest topology that
can be defined on a point set X. A space X with
topology 7 where there is at least one neighborhood for
each pair of distinct points in X is called a Ty space or
Kolmogorov space. A Sierpinski space is the smallest
topological space that is neither discrete nor indiscrete. This
space has two points, but only one of them is closed. It is
the smallest example of a topological space that is neither
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discrete nor trivial. Because the Sierpifiski space is the
classifying space for open sets in the Scott topology, it has
significant connections to semantics and computational
theory. General references and definitions may be found
in [1], and an excellent guide to finite topological spaces
is given by Stong[2]. When finite topological spaces are
concerned, 7y spaces are of utmost importance. 7; space
is discrete in finite topological spaces. Diesto and
Gervacio [3] established topologies using closed
neighborhoods as the basis for the topology. Conoy and
Lemence used the subbases to do more research.

In 2019, Nianga and Canoy [4] created a topology by
utilizing the open hop neighborhood of a vertex set. In
2021, Gamorez and Canoy [5] constructed a topology using
monophonic eccentric neighborhoods on a vertex set of the
graph and further characterized the graphs that induce
discrete and indiscrete topologies. Lemence [6] studied
the topologies generated by a few special graphs and also
characterizing the graphs that provide topological spaces
that are discrete and indiscrete. In 1992, Prea[7] defined a
topology compatible with a given graph such that an
induced subgraph is connected if and only if it is associated
with this topology. In recent years, more attempts have
been made to connect topology and graph theory. studies
discrete topological graphs and the domination in discrete
topological space [8, 9]. Omran et al. [10] defined another
class of graphs called special intersection graphs in
topological graphs.

II. TOPOLOGY INDUCED BY
THE GRAPH

Let G be the graph and V' be the vertex set of graph
G; here we consider the point set X = V' (G). Let Ig
be collection of topologies on X such that 7 € I iff
for any x adjacenttoy in G then 3 an open set G in X
such that x € G and y EG or x £G and y € G. We
call this collection Is a section of the Graph induced
topology of the graph G. The minimal topology
(Minimal in terms of coarser, i.e.,7 is minimal if there
does not exist any topology 7' € I such that 7' < T.)
T is called Graph, the induced topology of the graph
G. Let G be any graph of order n. Then clearly, the
discrete topology on the point set containing » elements
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is always a member of Is and hence Is is always
nonempty. Hence, given a graph G, we always get a
topology induced by the graph.

To spaces are foundational when it comes to separation
axioms, but 7, spaces are more significant in finite
topological spaces, as 7; spaces are discrete. Discrete and
indiscrete topologies are two extreme topological spaces.
Therefore, we define the topology induced by the graph in
such a way that the non-trivial graphs of finite order lie well
within the two extremes. This gives us a wealth of topics
to study. For Example: G be the graph given below.

G

X ={1, 2, 3, 4} be the point set and 7 = {®, {1}, {1,
4}, X} is the topology Induced by the graph.

Proof: Let 1 as a collection of topologies induced by
the graph G. Clearly, T is a topology. We need to show
T is the minimal topology in I. Let T be any topology
strictly coarser than T, i.e., T < T. Suppose T =
{®, {1}, X}. Since {3,4} € E(G) but there does not
exists any open set O € T such that 3 € O and 4 £
T £1lg. O or 3 £0 and 4 € O. Hence exists
anyopen set O € T’ such that 3 € O and 4 £0 or 3
£Oand4 € O.Hence T £ 1g.

If suppose 7' = {®, {1, 4}, X}. Since {1, 4} € E(G)
but there does not exists any open set O € T  such
that 1 € Oand 4 €0 or 1 £€0 and 4 € O. Hence T
" E1g. If suppose T = {®, X}. Since {1, 4} € E(G)
but there does not exists any open set O € T such that
l€EOand 4 €0 or 1 £0 and 4 € O. Hence T £ IG.
Hence T is the minimal topology which is in I and
hence T is the topology induced by the graph G.

III. TOPOLOGY INDUCED BY SOME
STANDARD CLASS OF GRAPHS

A. Theorem 3.1.

X =1{1,2, ., n} be the point set and T = {®, X} be the
indiscrete topology induced by the graph G. Then G
must be a null graph.

Proof: Let us assume that G is not a null graph. Then
3 an edge e = xy in G, since 7 is the topology induced
by the graph G 3 anopenset Oin7 3:x € Qand y £
Qorx £ Qandye€ Q. Hence OF ¢ and QF X, and Q

is an open set in X, which contradicts the fact that T is
an indiscrete topology. Hence, G must be a null graph.

B. Theorem 3.2.

Let G with vertex set V (G) = {1, 2, .., n} be a null
graph then lg consists of all topology with point set X =
V(G).

Proof: Let X = {l, 2, .., n} be the point set. 7 be any
topology defined on X since G has no edges T € I and
indiscrete topology is contained in every topology.
Hence, the indiscrete topology will be the topology
induced by the null graph.

C. Theorem 3.3.

Let G = K, represent the complete graph of order n,
then the collection of graph induced topologies I consists
of only Ty spaces. Moreover, the topology induced by the
graph G is a Ty or Kolmogorov space.

Proof: Let T € Ig be arbitrary, since G is complete
graph for any p &~ ¢, p is adjacent to ¢ hence 3 an
open set Q € T >: i € Qandj EQ or i £Q and j
€ Q. Thus T is a Tpspace. Given a graph G, any two
topologies induced by the graph G may not be
homeomorphic. For example: Consider the path graph
G with 5 vertices. Then 71 = {¢, {1, 3, 5}, X} and 7>
= {¢, {2,4}, X} are topology induced by the graph G
which are not homeomorphic to each other.

D. Theorem 3.4.

G = K,, be a complete graph of order n then for any T
€ I 3 an open set with a single element.

Proof: V(G) = X = {1,2,..,n} is the point set and
G is complete graph. T € Ig be arbitrary, Let O; €
T if O is singleton set then we are done if not say i, j
€ (i, since G is complete 7 is adjacent to j and hence 3
anopensetQ 3:i€Q andj£Q origQ andj € Q.
Consider 0> = 01 N Q. Clearly, 0> is a non-empty
proper subset of Q;. If O, is singleton then we are done
if not then 3 k£, / € 0> 3: k is adjacent to / hence 3 an
open set€ T 2: k € Qand /£  ork £ and [ € O
Now consider Qs = Q> N Q clearly Q5 is a non empty
proper subset of O». If Os is a singleton set, then we are
done; if not, continue the process. Since 7 is a finite
topological space, the process must terminate after a
finite number of times, resulting in a singleton set.

Corollary 3.4.1.
If T is a finite To space, then 3 an open set with a
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single element. Proof. Proof follows from Theorems 3.3
and 3.4

E. Theorem 3.5.

G be the graph and T be a topology induced by the
graph G. Then T¢ definedby T° = {G S X | G = OF
where O € T} is also a topology induced by the same
graph G.

Proof: Firstly T¢ is also a topology since ®, X € T ==
D= X X°=@ € T°. T¢ is the collection of closed sets
of T . Hence, finite union and finite intersection of
closed sets are closed, and 7¢ is a topology on X. Next
we claim the following (i) 7¢ € Ig (i) 7€ is
minimal. Proof of (i) For any edge {x, y} € E(G)
since 7' is a topology induced by the graph G 3 an
open set say O € T 3: x€Oand y £ O or x £ O and
y€O0. Ifxe€ Oand y £ O then x £ O° and y € O°
hence 7° € Ig. If x €0 and y € O then x € O° and y
EO° hence T¢ € Ig.

Proof of (ii) Assume 7°¢ is not minimal then 3 a
topology T1 € Ig 3: 71 < T¢ then
T¢ c (I == T cT

T¢ € I by claim (i) which contradicts the fact that T is
the minimal topology. Hence, 7¢ 1, 1 is also a topology
induced by the graph G.

Corollary 3.5.1.

If T is a To space, then T¢ is also a To space. Proof.
Proof follows from Theorems 3.3 and 3.5

F. Theorem 3.6.

If G is a bipartite graph that has bipartitions A and
B, then T = {®, A, X} is the topology induced by the
graph G.

Proof: Clearly T is a topology, For any edge say
{x, v} € E(G) since G is bipartite say x € A and y
€ B,if x € A then y £A4, hence T € Ig and T is
minimal, if not then Jatopology 7' < T 3: T ' € Ig
then 7' = {®, X} hence for any edge {x, y} € E(G)
there does not exists any open set O in 7 such that x €
O and y € O or x £ O and y € O this leads a
contradiction. Hence, 7 is minimal and 7 is the
topology induced by the graph G is bipartite.

Corollary 3.6.1.

If G is bipartite with bipartition A and B then T,
= {®,4, X} and T>= {¢, B, X} are topology induced
by the graph G where X = A U B. Proof. The proof
follows from Theorem 3.5 and Theorem 3.6

G. Theorem 3.7.

Let G = Cou+1 be a cyclic graph with edges connecting
1-2-3..2n2n+1-1 then T = {®, {1}, A, X} where A
={1,35 ..., 2n+1}.

Proof: Clearly, T is a topology. For any edge e = {j,
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J} € E (C2,+1) other than {1, 2n + 1}, one vertex is
odd and another is even; therefore, the odd vertex € 4
and the even vertex do not. For the edge {1, 2n + 1}1
€ {1} and 2n+ 1 € {1} hence 7 € 1. Next, we claim
that 7 is minimal. If not 3 a topology T € Ig
such that 7' < T then the possibility for 7" is T =
{0, X} or T' = {®, {1}, X} or T' = {®, 4, X}. If
T' = {®, X} then for any edge e = {x, y} € E(G)
then there does not exists any open set O in T such
that x € O and y € O.If T’ = {®, {1}, X} then for
edge e = {2, 3} € E(G) then there does not exists any
open set O in T such that 2 € O and 3 £0. If T' =
{®, A, X} then for edge e = {1, 2n + 1} € E(G) then
there does not exist any open set O in T’ such that 1 €
O and 2n+ 1 £ O. Hence T is the minimal topology in
I and T is the topology induced by the graph G.

H. Theorem 3.8.

G be a tripartite graph with tripartition A, BandC then
the topology induced by the graph G is T = {¢, A4, A
UB, X}

Proof: Clearly, T is a topology. Since T is a tripartite
graph, we have 3 kinds of edges. first kind whose end
vertices are in 4 and B, second kind whose end
vertices are in B and C, third kind whose end vertices
are in 4 and C. For any edge e = {x, y} in the first
kind, say x € 4 and y € B Hence 3 an open set 4 € T
3:x€A4and y £ 4. If e = {x, y} is an edge of the
second kind, then x € B and y € C then we take O =
AU B such that x € Q and y € Q. If e = {x, y} is an
edge of the third kind, then x € Q and yinC then we
take O = 4 such that x € Q and y £ O. Hence T € I¢.
Now we will show 7' is minimal, Assume that 7" is not
minimal then 3 7' € I such that T is proper subset
of T then possible 7" are 7' = {®, X} or T = {®,
A Xy or T'= {0, AU B X} If T' = {®, X} then
for any edge e = {x, y} € E(G) then there does not
exists any open set O in T such that x € Q and y £
Q. If T'= {®, 4, X} then for any edge e = {x, y} €
E(G) of second kind then x € B and y € C then there
does not exists any open set Q in T such that x € Q
and y £ Q. If T'= {®, AU B, X} then for any edge e
= {x, ¥y} € E(G) of first kind then x € B and y € C
then there does not exists any open set QO in 7' such that
x € Q and y € Q. Hence T is the minimal topology in
I and T is the topology induced by the graph G.

1. Theorem 3.9.

Let Let G be a graph and Tg = {®, X, Ay, 4>, ..., Ai} be
the graph induced topology of graph G on point set X =
V(G) then T=Tg U {Y } is the graph induced topology
of graph G+ {v} where ¥ =X U {v}.

Proof: Here we claim the following. (i) 7 is
topology on Y. (ii) T € Ig+py. (iil) T is minimal
topology. Proof of claim (i) ® and Y are in 7. Let G
and H be any two open sets in 7’
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case 1: If O; = @ and O be any open set then O; U O»
= 0, and O N O = @ both are trivially in 7.

case 2: If 01 = A4; and 0> = A4, then Q1 U O» and 01 N
O» are in T since T is a topology and hence O; N O»
are in 7.

case 3: If Q1 = X and 0> = 4, then O, U 0> = X and
01N QO,= 0, and hence in T. case 4: If O, =Y and
Qz = A; then Q] U Qz = Y and Q1 N Qz = Q2 and
hencein T. case 5: If Q1 =X and Q> =Y then O U
O, =Y and O1 N O, = X and hence in 7. Which
proves claim (i). Proof of claim (ii) Let e = {x, y} €
E(G + {v}) if e is an edge in G and T is the
topology induced by the graph G 3 an open set O €
T such that x € O and y €0 or x £0 andy € O and
O € T we are done.

If e is an edge with one vertex v and another vertex,
say x in V' (G), then choose an open set as X x € X and v
£ X. hence for any edge in £(G + {v}) we can find an
open set O with one vertex in O and other not in O hence
proof the claim (ii). proof of claim (iii) Suppose assume
that 7 is not minimal then 3 a topology 7' € Igin
such that 7' < T . Consider A = {4, Az, ..., Ai}.
Suppose T’ = {®, Y, X} then for any edge e = {x, y} €
E(G + {v}) then there does not exists any open set O in
T such that x € O and y £ O or x £ O and y € O thus
leading a contradiction.

Suppose 7' = T — {X} then clearly T is a topology
and for any 7 € V' (G), v is adjacent to 7 in G+{v} then
there exsits an open set O € 7' such i € O and v £
Oori£0O andv € O forall i € V(G) since Y is the
only open set which contain v, Y also contain all
vertices of V' (G). Hence Y ~ O and O must be
equal to some 4; and i € A4; for eachi € V(G). And
X = Ueyy4i hence X € T " leading to contradiction.
Let 7' = {®, X} UA where A" € A now consider T’
= {®, X} U A then T' is a topology and for any
edge e = {x, vy} € E(G) == e{x, y} € E(G + {v})
also and 7' is topology induced by the graph G+ {v}
hence 3 open set O € T’ such that x € O and y £0 or
x£0 and y € O and hence O € T' and hence T' € Ig
which contradicts the minimality of 7. Hence the
proof.

Corollary 3.9.1.

Let G be the graph and T = {®, X, A1, A>, ..., Ai} be the
topology induced by the graph G then the topology
induced by the graph G + K, will be given by T,, = {®, X
U {vi}, X U {vi, 2}, ..., X U {v1, v, ..., vu}, X, Ay, Ao,
ooy Ak} where V (K,) = {vi, va, ..., Vn}.

Proof: By theorem 3.9 if T = {®, X, 4, A>, ..., A} is
the topology induced by the graph G then 77 = {®, X
U {vi}, X, 4, A, ..., Ak} is the topology induced by the
graph G + K where V(K1) = {vi} by induction we can
say that the topology induced by the graph (G + K;) +
Ky is T» {®, X U {vi}, X U {vi, w2}, X, 4, 4>, ...,
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A}y where V (K,) = {vi, v, ..., vu} and (G + K}) + K
= (G + K3) then continue the process after n steps we
get that the topology induced by the graph G + K, is
given by 7, = {®, X' U {vi}, X U {v;, m},..., X U

{V], V2, ..., vn}, /Y, A], Az, veey Ak} where V(Kn) = {V],
V2, oy Vit

IV. CONCLUSION

In this paper, we introduced and studied a notion of
topology induced by a graph on a finite vertex set,
emphasizing the role of minimal topologies that
respect adjacency relations in the underlying graph.
We characterized the induced topologies for several
standard classes of graphs, including null graphs,
complete graphs, bipartite graphs, odd cycles, tripartite
graphs, and graph extensions via joins. Overall, this
work highlights a clear and constructive bridge
between finite topology and graph theory. The
framework developed here not only unifies several
existing constructions of graph-based topologies but
also opens avenues for further research.
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