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Abstract - This paper firstly, presents an autopilot strategy for a 
Hypersonic Transport Aircraft (HST) using a Stability 
Augmentation System (SAS) with a Luenberger estimator. The 
SAS is designed using Linear Quadratic Regulator (LQR) 
theory which, for HST, benefits the guaranteed robust dynamic 
stability provided three theoretical requirements are met. The 
Luenberger estimator is incorporated into the autopilot design 
to estimate the state variables of the aircraft for the SAS. In the 
dynamic response simulation, sensor and process noises are 
inserted into the mathematical model. However, to date, 
knowledge of the sensor and process noises at the speeds and 
heights where the aircraft will be flying is limited. The 
simulation shows that the Luenberger estimator significantly 
filters the noise. This is an advantage for the HST as prior 
knowledge of the noises is not necessary when designing the 
Luenberger estimator. 
Keywords: Hypersonic Aircraft, LQR Theory, Luenberger State 
Estimator, Sensor Noise Reduction, Process Noise Reduction 

NOMENCLATURE 

As scientific texts use different notations applied in this 
paper are mentioned below. 

h Aircraft altitude (ft) 
θ Pitch attitude (rad) 

α Angle of attack (rad) 
m Vehicle mass per unit width (slug/ft) 
m Generalised elastic mass per unit width (slug/ft) 
Uo Flight Speed (ft/s) 
w Vertical velocity (ft/s) 
q Pitch rate (rad/s) 

X,Y,Z Force components of body axis (lb) 
Iyy Pitching moment of inertia (slugs.ft2) 
M Pitching moment (lb.ft) 

M∞ Mach number at freestream condition 

a∞ Speed of sound (ft/s) 

ω1 
Natural frequency of first in vacuo vibration mode 
(rad/s) 

ζ1 Damping ratio of first in vacuo vibration mode 
x State vector 
A State Coefficient Matrix 

B Control Coefficient Matrix 
u Control vector 

∆ Perturbation of aircraft state variable from  
trimmed condition 

u Forward speed (ft/s) 
η Generalised elastic coordinate (rad) 
δF Flap deflection (rad) 
AD Propulsion diffuser area ratio 

To Total temperature across combustor (oR) 
y Output vector 
C Output Coefficient Matrix 
K State feedback gain matrix 
P Solution to the algebraic Riccati equation 

Xx Partial derivative of the total force along X axis with 
respect to x 

g Acceleration due to gravity (ft/s2) 
c1 Pressure coefficient 

∆τ1 Vehicle nose angle from side view (rad) 

Zx Partial derivative of the total force along Z axis with 
respect to x 

λ Eigenvalues of aircraft without feedback control 
system 

I Identity Matrix 

xE Estimated state vector (from the Luenberger 
estimator) 

F
 Coefficient State Matrix (from the Luenberger 

estimator) 

G
 Coefficient Control Matrix (from the Luenberger 

estimator) 
KE Estimator gain matrix 
yE Estimated output vector 

e Difference between the estimated and the actual state 
vector 

v State Estimator Feedback Control Law 

Go Control weighting matrix (to find a Luenberger 
Estimator matrix) 

Q State weighting matrix (to find a state feedback gain 
matrix) 

G Control weighting matrix (to find a state feedback 
gain matrix) 

rms Root mean square value 
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I. INTRODUCTION 

 
Hypersonic fight vehicle (HFV) has a flight speed exceeding 
5 times the speed of sound. This vehicle has dual capability 
to fly as a spacecraft and an aircraft and has significant 
military value and potential economic value [1]. The system 
states of HFV are usually difficult to be accurately measured 
due to sensor noises and complex flight environment, which 
makes the controller design extremely difficult. In [2], the 
tracking control problem of hypersonic flight vehicle (HFV) 
with measurement noises and system uncertainties were 
investigated. To deal with such a problem, a linear quadratic 
Gaussian (LQG) optimal control algorithm and a robust 
back-stepping control strategy are proposed using Kalman 
filter. In [3], the augmented fixed-time observers and 
adaptive super-twisting controller are combined to ensure the 
superior tracking performances of HFV under the effects of 
uncertainties, disturbances, and measurement noises. 
 
In this paper, the method of designing, by means of the 
optimal Linear Quadratic Regulator (LQR) theory, an 
effective Stability Augmentation System (S.A.S) to stabilise 
the longitudinal dynamics of an aircraft flying at a hypersonic 
speed is first described. LQR theory has considerable 
practical advantages for use in Automatic Flight Control 
System (AFCS) design, particularly for the hypersonic 
transport (HST) aircraft, since it guarantees robust closed-
loop dynamic stability as long as three theoretical 
requirements are met [4,5]. However, the optimal LQR 
control law requires that all the state variables of the aircraft 
be measurable. This is impractical but with the use of a 
Luenberger state estimator, LQR theory is practical although 
it involves a slight loss in optimality [4,5,6,7].  
 
A dynamic simulation shows that the longitudinal dynamics 
of the HST aircraft, with the controller and the estimator 
operating together, were found to remain stable. It was found 
also that the response of the estimated state vector generated 
by the Luenberger estimator quickly reached that of the 
hypersonic aircraft even when the aircraft was subjected to 
disturbances or to command inputs. The paper also shows 
that the Luenberger state estimator is able to reduce the 
output noise present in the HST dynamics even when there 
are aircraft sensor noise and process noise present. This is 
advantageous to an HST aircraft flying at a range of high 
Mach numbers and heights because knowledge of the sensor 
and process noises at these speeds and heights is limited [8]. 
 
In this paper, the mathematical model of the aircraft is firstly 
introduced. Then, the state of the aircraft static and dynamic 
stability is briefly analysed. Using optimal Linear Quadratic 
Regulator theory, a Stability Augmentation System is 
designed and a Luenberger estimator is incorporated into the 
autopilot system. Finally, the sensor and process noise 
reduction capability of the SAS with Luenberger estimator is 
demonstrated.  
 

II. THE MATHEMATICAL MODEL OF THE 
HYPERSONIC AIRCRAFT LONGITUDINAL 

MOTION 
 
The mathematical model of the hypersonic aircraft presented 
in this paper is based on the mathematical model of the X-30 
Reusable Launch Vehicle (RLV) published by Chavez and 
Schmitt [9]. However, the published mathematical model had 
to be developed further to suit the needs of the research work 
published in this paper. Details of the modifications are 
presented in [10]. The X-30 configuration [9], is shown in 
Figure 1.  
 

 
Fig. 1 X-30 

 
The longitudinal equations of motion to be considered here 
are 
 

 
Equations (1 – 4), linearised with respect to an equilibrium 
flight condition, yield the linearised perturbation equations: 
 

       
where Uo = M∞a∞ , g is the acceleration due to gravity and 
the delta quantities are the perturbations from the equilibrium 
flight condition. With undamped natural frequency ω1 and 
damping ratio ζ1 the perturbed equation of motion describing 
the elastic degree of freedom is governed by 
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Based on the method in [9], and the modifications reported 
in [7], the mathematical model of the HST aircraft used in 
this work which forms the basis of this paper was represented 
by a linear, time-invariant, state equation 
 

                              

x∈Rn represents the state vector and u∈Rm represents the 
control vector. A is the state coefficient matrix and B is the 
driving matrix, of order (n×n) and (n×m) respectively.  
 
If, for example, the aircraft dynamics has 7 state variables 
and 3 control variables, then n = 7 and m = 3. The state and 
the control variables are defined in Eqn (12) and (13). viz. 

 

     
 
The variables are all perturbations from an equilibrium flight 
condition. The output equation is represented by the Eqn (14) 
below 

                 
where y is the output vector and C is the output matrix.  
 
The complete procedure for obtaining the coefficient 
matrices, A and B, at different flight conditions for the HST 
aircraft is presented in [9] and [10]. Shown below are the 

formula obtained to develop the matrices A and B at various 
flight conditions. 
  

 

 
To obtain the findings presented in this paper, the aircraft was 
simulated to be flying at Mach 8.0 and at an altitude of 
85,000ft. The stability and control derivatives obtained from 
[9,10] show the individual contributions of aerodynamics, 
engine thrust and exhaust gas. Then, these individual 
contributions are added up to obtain the total values. The 
results are tabulated below. 

 
TABLE I STABILITY AND CONTROL DERIVATIVES FOR AIRCRAFT FLYING AT MACH 8.0 AND AT A HEIGHT OF 85000FT 

Stability Derivatives 

Symbol Aerodynamics 
Contribution 

Engine Thrust 
Contributions 

Exhaust Gas 
Contributions Total Units 

 -3.5860×103 1.3755×103 1.5725×102 -2.0533×103 lb/ft 

 -7.6496×104 5.4504×104 4.4770×103 -1.7515×104 (lb/ft)/rad 

 2.1784×102 -4.0782 -3.3498×10−1 2.1343×102 (lb/ft)/(rad/s) 

 -1.0084×103 9.5128×102 2.1951×102 1.6244×102 (lb/ft)/rad 

 3.7529 0.0 0.0 3.7529 (lb/ft)/(rad/s) 

 -8.4842×103 0.0 -4.3193×102 -8.9161×103 lb/ft 

 -2.1813×105 0.0 -1.2298×104 -2.3042×105 (lb/ft)/rad 

 8.7362×102 0.0 9.2013×10−1 8.7454×102 (lb/ft)/(rad/s) 

 -2.5446×103 0.0 -1.6317×102 -2.7078×103 (lb/ft)/rad 

 1.5051×101 0.0 0.0 1.5051×101 (lb/ft)/(rad/s) 

MX
∞

Xα

qX
Xη

Xη

MZ
∞

Zα

qZ
Zη

Zη
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 -2.3513×104 1.5062×104 -8.3443×102 -9.2858×103 lb 

 3.7699×106 5.9682×105 -2.3757×104 4.3430×106 lb/rad 

 -5.7842×104 -4.4656×101 1.7776 -5.7885×104 lb/(rad/s) 
 1.1589×105 1.0417×104 1.0834×103 1.2739×105 lb/rad 

 -9.2234×102 0.0 0.0 -9.2234×102 lb/(rad/s) 

 3.3070×103 0.0 5.1928×101 3.3589×103 lb 

 1.2446×105 0.0 1.4784×103 1.2594×105 lb/rad 

 -9.5815×102 0.0 -1.1062×10−1 -9.5826×102 lb/(rad/s) 

 2.1723×103 0.0 2.5804×101 2.1981×103 lb/rad 

 -1.6560×101 0.0 0.0 -1.6560×101 lb/(rad/s) 

 
Control Derivatives 

Symbol Aerodynamics Engine Thrust Exhaust Gas Total Units 

 -5.6795×104 0.0 0.0 -5.6795×104 (lb/ft)/rad 

 0.0 -7.8975×104 -6.8185×103 -8.5793×104 lb/ft 

 0.0 6.4254 2.3888×10−1 6.6643 (lb/ft)/deg R 

 -5.6954×104 0.0 0.0 -5.6954×104 (lb/ft)/rad 

 0.0 0.0 1.8729×104 1.8729×104 lb/ft 

 0.0 0.0 -6.5617×10−1 -6.5617×10−1 (lb/ft)/deg R 

 -2.3511×106 0.0 0.0 -2.3511×106 lb/rad 

 0.0 -8.6477×105 3.6182×104 -8.2859×105 lb 

 0.0 7.0358×101 -1.2676 6.9090×101 lb/deg R 

 0.0 0.0 0.0 0.0 lb/rad 

 0.0 0.0 -2.2517×103 -2.2517×103 lb 

 0.0 0.0 7.8887×10−2 7.8887×10−2 lb/deg R 

 
At that flight condition, using Eqn (15) and (16), the corresponding matrices A, and B could be shown to be: 
 

 

 
 

MM
∞

Mα

qM
Mη

Mη

MQ
∞

Qα

qQ
Qη

Qη

F
Xδ

DAX

oTX

F
Zδ

DAZ

oTZ

F
Mδ

DAM

oTM

F
Qδ

DAQ

oTQ
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III. THE RESPONSE OF THE AIRCRAFT 

DYNAMICS TO COMMANDED INPUT  
 
It is common practice to check the nature of stability of an 
aircraft before any AFCS is designed. The nature of the 
aircraft static stability can be measured from a knowledge of 
the aircraft change in pitching moment with respect to the 
change in angle of attack, Mα [7].  
 
Mα, is found to be 4.3430×106 lb/rad. It can be seen here that 
the aircraft is statically unstable since the change in pitching 
moment in one direction will also result in a change in the 
angle of attack in the same direction. Hence, the aircraft has 
no natural tendency to return to its equilibrium state when it 
is subjected to gust or other similar disturbance. The other 
point of interest to note here is that the level of static 
instability of the aircraft is exceptionally high, of the order 
106. This is higher than usual when compared to that of any 
other aircraft known to be flying today, 
 
The dynamic stability of the aircraft can be analysed from the 
eigenvalues of the coefficient matrix, A. These eigenvalues 
can be calculated by solving Eqn (19) shown below. 
 

 
where I is an identity matrix and λ is the eigenvalue set.  
 
By solving the characteristic equation of the matrix [λI – A], 
the eigenvalues of the HST were found and shown below.  
 

λ1 = 2.33 
λ2 = -2.49         
λ3 = 0    
λ4,5 = -1.89×10−3 ±  j5.78×10−2 
λ6,7 = -0.55 ± j16.4 

 
λ1 is a positive real number which implies that the aircraft is 
dynamically unstable [7]. To confirm this, the response of the 
aircraft to a 5-degree step input change in angle of deflection 
to the flaps is simulated using Matlab® and Simulink® 
software. The block diagram of the aircraft dynamics used for 
the Simulink software can be seen below.  
 

 
Fig. 2 The Block Diagram of the Aircraft dynamics 

 
Figure 3 shows the responses of the aircraft state variables. It 
can be seen here that the aircraft dynamics are unstable as the 
responses do not approach any steady state value but instead 
increase indefinitely. 

 
Fig. 3 Dynamic responses of Hyperion pitch attitude, θ, and pitch rate, q, to 

a 5-degree step input  change in flap angle 
 

IV. STABILIZATION OF THE LONGITUDINAL 
MOTION OF HYPERION 

 
The HST dynamics have been shown to suffer from 
instability problems. The method of designing an effective 
Stability Augmentation System (S.A.S) for the HST to 
stabilise the aircraft dynamics based on LQR theory is 
described in this section. Without any S.A.S, the HST 
showed highly unstable dynamic response. How LQR theory 
was used to obtain an optimal feedback control law which 
stabilised the aircraft dynamics is described next.  
 
The LQR theory can be stated as follows. Find a feedback 
gain K so that the performance index 

      
is minimised. The solution to this problem is well known 
[4,5,6]. The feedback gain K that solves the LQR problem is 
given by: 

               
where P is the solution to the algebraic matrix Riccati 
equation: 

    
To guarantee the existence of a unique solution, G must be 
positive definite (G > 0). A sufficient condition for the 
existence of a solution P for the Riccati equation is that Q 
must be positive semidefinite (Q ≥ 0). How the controller is 
incorporated into the aircraft dynamics is shown next. The 
block diagram of the aircraft dynamics is shown below. 
 

 
Fig. 4 Aircraft dynamics with a Stability Augmentation System (S.A.S) 
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xcomm is the command input for the controlled aircraft 
dynamics, and is a vector of dimension, n. Note that the 
command input is inserted into the aircraft dynamics as a 
commanded change in the state of the aircraft. 
 
For the HST dynamics, the matrices, Q and G, which were 
chosen for the performance index given in Eqn (20) are 
presented below. 

 

  
 

 
 

The choice of the elements for the matrix, Q, was made to 
stabilise the short period mode. High penalties were placed 
on any changes in the angle of attack, ∆α, (e.g., in Eqn (22); 

Q(2,2) = 5.0) and the pitch rate, ∆q (Q(3,3) = 10.0). This 
choice of weighting elements was made to penalise any 
persistent motions involving these state variables. At this 
time, no penalty was applied to any changes in structural 
bending, ∆η and ∆  because the contributions of these 
variables towards the aircraft instability were uncertain. The 
other diagonal elements of the matrix, Q, were chosen 
completely arbitrarily. The three controls, δF, AD and To were 
penalised equally as can be seen from the matrix, G, of Eqn 
(24). Note that the matrix, Q, was positive semidefinite; the 
matrix, G was positive definite. 
 
A solution to the associated Riccati equation was found by 
using a routine in the Matlab Control System Toolbox. The 
resulting matrix was 

 

 
 

This solution, P, to the algebraic Riccati equation is both 
symmetrical and positive definite. Using Eqn (21), the 
optimal feedback gain matrix can then be calculated. It is 
shown below as Eqn (26). 

 

 

The dynamic stability of an aircraft with closed-loop control 
can be determined by solving Eqn (27). A controlled aircraft 
is dynamically stable if all the real eigenvalues of the closed-
loop eigenvalues or the real parts of these eigenvalues are 
negative [4,5,6,7]. 

                 

    
 
From Eqn (27), After stabilisation the eigenvalues of the HST 
were found using Eqn (27). All the closed-loop eigenvalues 
of the optimally controlled HST can be deduced to possess 
negative real parts which indicates that the controlled aircraft 
will be dynamically stable. These are shown in Table II. 

 
TABLE II HYPERION’S CLOSED-LOOP EIGENVALUES FLYING AT MACH 8.0 AND AT A HEIGHT OF 85000FT 

 

Closed - Loop Eigenvalues Natural Frequencies Damping Ratios Motion Represented 

ζ1,2 = -0.52 ± j0.6 0.79 rad/s 0.66 Phugoid 
ζ3,4 = -0.55 ± j16.428 16.4 rad/s 0.03 Structural Bending 

ζ5 = -5.765 - - Short Period 
ζ6 = -205.87 - - Short Period 
ζ7 = -1.3288 - - Height 

 
The responses of the stabilised aircraft to an initial 
disturbance in height are shown in Figure 5.  
 

These responses indicate that the controlled aircraft is 
dynamically stable whenever it is subjected to disturbances. 

η
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Fig. 5 The closed-loop dynamic responses when Hyperion was subjected to 

an initial disturbance in height of 100ft 
 
In Figure 5, the oscillation of the phugoid motion is evident 
on every response. The period of oscillation is approximately 
8 seconds. The oscillation of the structural bending motion 
can be seen on the ∆η initial disturbance response curve. This 
comes about as a consequence of not applying enough 
penalties to the change in the structural bending state variable 
and its rate of change.  
 

 
Fig. 6 ∆δF, ∆AD and ∆To responses to an initial disturbance in height of 

100ft 
 
The structural bending oscillation with the natural frequency 
and damping ratio tabulated in Table II cannot be seen in any 
other response, however. The aircraft's height response took 
approximately 15 seconds to completely settle after being 
subjected to the initial disturbance. In Figure 6, the responses 
of the control inputs of the controlled aircraft are plotted 
against time. 
 
These responses do not display any excessive control activity 
or exceed the physical limits of the controls in response to the 
disturbance. The change in flap angle peaked immediately at 
-0.12rad (-7o) and oscillated with a low frequency of 
approximately 1.25Hz. A similar oscillation was observed in 

the response of the engine diffuser area control. Both 
controls, however, settled after 14 seconds. It is interesting to 
note that there was no visible change in the temperature 
response across the engine combustor control. It has been 
shown here that using a controller design using LQR theory, 
the aircraft dynamic motion can be stabilised. 
 
However, the synthesis of the optimal feedback control law 
presented assumes that all the state variables of x are 
measurable. In practical aircraft flight control systems, it is 
physically or economically impractical to install all the 
transducers which would be necessary to measure every state 
variable [6,7]. A state estimator is used, therefore, to 
reconstruct those aircraft state variables which are difficult or 
impossible to measure. The state estimator is a dynamic 
system whose state vector, xE, is, ultimately, a close 
approximation to the aircraft state vector, x. The entire 
estimator state vector, xE, is available from the estimator for 
use in implementing the feedback control law. Including an 
estimator into the dynamics of the closed-loop system for the 
HST can work, but at the cost of a slight loss in optimality 
i.e., the resulting minimum performance index, J, for the 
same initial state vector x(0), is slightly higher [4,5,6]. 
 
V. USING THE LUENBERGER STATE ESTIMATOR 

SYSTEM WITH THE HST LONGITUDINAL 
MOTION WITH CONTROLLER 

 
At this point it is intended to include the dynamics of a 
Luenberger optimal state estimator system into the HST 
dynamics. Brief details of the estimator are presented next 
based on [4] and [7]. 
 
For a system defined by Eqn (11) and (14), it is intended to 
design an estimator which will provide an estimated state 
vector, xE, but will require only inputs from the control 
vector, u, and from another vector, w, which is related to the 
output vector, y. Hence, 

 
The forcing vector w is chosen to be 

     
where KE is the estimator gain matrix and yE is the 
estimated output vector defined as: 

        
Hence, 

           
 
However, from Eqn (1), 

                  
If Ĝ  = B, then 
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Hence,  

 
By choosing the coefficient matrix, F̂ , of the estimator to be 
identical to that of the aircraft, i.e., F̂  = A, and by defining 
any difference between the estimated and the actual state 
vector to be an error vector, e, it can easily be shown that: 

 
Provided that the real eigenvalues or the real parts of the 
eigenvalues of the matrix, ( )CKA E−  are negative, then, as 
t →∞ , the error vector, e, will tend to zero and the estimator 
vector, xE, will correspond to the state vector, x, of the 
aircraft. Only KE is required to obtain this condition.  
Suppose 

           
then, to minimise v~ , use the performance index: 

 
 
The resultant control law is: 

          

where, 

          
Substituting Eqn (38) into Eqn (36),  

    
Hence,  

      
If it can be arranged such that: 

          
then, the optimal closed-loop estimator will be the required 
estimator provided that: 

                 

                  
and 

                 
Using LQR theory, the optimal feedback gain matrix for the 
closed-loop estimator can be conveniently found. The aircraft 
dynamics with the estimator system included can be 
represented by the block diagram of Figure 7. 

  

Fig. 7 The aircraft dynamics with an estimator system included. KE is the Luenberger estimator gain matrix 
 
It should be noted that the ability to reconstruct the aircraft 
state variables from the output of the aircraft dynamics 
requires that the state variables be observable. The necessary 
condition for complete observability is given by Eqn (46). 

 
n is the dimension of the aircraft state vector. 

It should be noted that when calculating the Luenberger 
estimator gain matrix, KE, using Matlab Control System 
Toolbox, the algorithm used is the same as when calculating 
the optimal feedback gain matrix for the aircraft closed-loop 
system. But instead of using the matrix, A, as the plant 
matrix, AT is used (See Eqn (43)) and likewise, instead of 
using the matrix, B, as the driving matrix, CT (See Eqn (44)), 
is used.  
 
The theoretical requirements that the matrix, Qo, has to be at 
least positive semidefinite and the matrix, Go, must be 
positive definite in Eqn (37) must also be observed. 
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Here, it is assumed that the only measurable state variables 
which can be obtained from the HST are ∆α, ∆q and ∆h. 
Hence, for the aircraft dynamics output equation, Eqn (14), 
the matrix C, is: 

 

 
 
To ensure that the estimator can estimate all the state 
variables of the aircraft, the dynamics of the aircraft have to 
be observable. Using Eqn (46), the rank of the corresponding 
observability matrix was 7, the same as the dimension, n, of 
the state vector. Hence, the aircraft dynamics are observable, 
and an estimator can be designed. 
 
To obtain the gain matrix of the Luenberger estimator, the 
performance index Eqn (37) was minimised. Any persistent 
difference between the state vector of the estimator and the 
state vector of the aircraft was penalised by use of the state 
weighting matrix, Qo, viz.,  
 

 
 
The choice of elements of matrix, Qo, was arbitrary, but its 
positive semidefinite nature was maintained. Since there are 
three measurable state variables, the matrix, Go, is of order 
(3×3). Again, the choice of the diagonal elements of this 
matrix was also arbitrary but the matrix was required by 
theory to be positive definite, viz., 

                    

The solution, , to the algebraic Riccati equation resulted 
in the minimisation of the performance index. Then, using 
Eqn (39), the Luenberger estimator gain matrix was 
obtained, viz. 

 
 
The responses of the aircraft with the estimator operating are 
presented next. Figure 8 shows the height response of the 
aircraft with the Luenberger estimator subjected to an 
arbitrary commanded step input. The response shows that the 
controlled aircraft, using in the feedback control the state 
vector reconstructed in the Luenberger estimator, was stable. 

 
Fig. 8 The change in height response (∆h) of Hyperion with a Luenberger 

estimator 
 
The height response of the estimator was virtually identical 
to that shown by the aircraft height output. This is easily 
confirmed by plotting the difference between both responses 
against time, as presented in Fig. 9.  
 
The maximum difference occurred instantaneously as a result 
of the step-input command, but this difference did not persist. 
No difference was visible between the aircraft output, y, and 
the estimator output, yE, after 0.2 second. Similar results were 
obtained for other output variables. 
 
It has been shown here that a suitable controller designed 
using LQR theory and a Luenberger state estimator can be 
incorporated into the HST dynamics. 
 

 
Fig. 9 The difference between the aircraft height output and the estimator 

height output 
 

VI. LUENBERGER ESTIMATOR ABILITY TO 
REDUCE SENSOR AND PROCESS NOISES 

 
So far, in this presentation of the research work conducted on 
the HST, any effect of noise or disturbances on the aircraft 
closed-loop stability has been neglected. In this section, the 
effects of sensor and process noise on the aircraft closed-loop 
dynamics are examined. The situation can be represented 
symbolically using the block diagram of Fig. 10. 
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Fig. 10 Measurable output vector, y 

 
To reduce the level of noise, the signals from the aircraft 
output have to be filtered. A study by Chen and Chung [12] 
used Luenberger estimator as noise estimator but not as a 
noise filter. In this section, the Luenberger estimator is shown 
to have a capability to reduce noises without a prior 
knowledge of the noise characteristics. 
 
When designing an AFCS for an aircraft, the only signal 
available to indicate any changes in the aircraft dynamics is 
the output signal, y, which is measured using sensors on the 
aircraft which detect changes in, for example, atmospheric 
pressure, attitude changes or structural bending. When a 
change in the aircraft state is required, a control input signal, 
u, is supplied by the pilot or the AFCS to cause the aircraft 
controls to change/deflect appropriately. The sensors then 

detect any changes in the aircraft state, caused by these 
changes in the control inputs. The output signal, y, is usually 
not a smooth signal, however. The signal is often 
contaminated with noise from the sensors themselves and 
also from other sources such as atmospheric turbulence. But 
at heights where the HST is to fly during the scramjet engine 
phase i.e., at heights between 80000ft and 100000ft, 
atmospheric turbulence is minimal [13]. 
 
To account for how such noise could affect the closed-loop 
dynamics of the HST, consider the two types of noises 
commonly associated in AFCS studies. The first type, 
process noise, appears in the form of atmospheric turbulence; 
and the second is sensor noise i.e., the noise inherent in any 
sensor measuring an aircraft output signal. The effect of these 
noise sources resulted in considerable difficulty in 
identifying the original ‘clean’ output signal of the aircraft in 
the response to the same stimulus in the absence of noise. 
 
Fig. 11 shows the mathematical model of the controlled 
aircraft using a state estimator. The points at which the 
process and sensor noise, w and v respectively, were inserted 
into the aircraft dynamics are clearly shown. 

 

 
Fig. 11 Block diagram of an aircraft mathematical model with an estimator system but also with noise inputs 

 
The estimator gain matrix is denoted by KE. The optimal 
feedback gain matrix of the controller is K. The output of this 
aircraft is y and that of the estimator is yE. The properties of 
the noise inputs are presented next. First, note that the block 
diagram in Fig.11 assumes additive noise only. It was also 
assumed that the noise was injected at two points only. This 
meant that any noise entering with the optimal control, uo, is 
equivalent to some other noise entering at the same point as 
w. Noise from the sensors that contaminate the aircraft output 
signal, y, is equivalent to adding a noise term, v, to the output 
signal.  
 

Both noises, w and v, were assumed to be white, Gaussian, 
and to have zero mean. The first property implies that the 
noises were uncorrelated from instant to instant. The second 
property implies that all probabilistic information about the 
noise were summed up in the covariance of the noise e.g., E 
[v.v'] for v.  E(X) is the expectation of X which is also known 
as the mean or average value of X over an infinite number of 
X. It will be shown here that the Luenberger estimator which 
will also double as a noise filter, is capable of significantly 
reducing the level of noise in the HST dynamics without any 
a priori knowledge of the noise characteristics.  
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The performance of the noise filter will be measured by 
calculating the covariance of the vector ê  where Eyye −=ˆ  
i.e., the difference between the aircraft output, y, and the 
estimated output, yE. ê  can also be taken as the noise rejected 
by the filter from the aircraft output signal. The size of the 
covariance of ê  indicates the amount of noise that has been 
filtered out. Because the noises added into the aircraft 
dynamics are characterised in terms of their covariance, 
comparison of the covariance of noise rejected by the filter, 
ê , can easily be made. The activities of the control inputs of 
the aircraft were also plotted against time and the rms values 
were calculated to determine the existence of any excessive 
control responses. 
 
Chalk [11] has concluded that the probability of encountering 
turbulence decreases from 80% at sea level to only 7% at an 
altitude of 40000ft. Similar conclusions were made by 
Ehemberger [12]. In this paper, the process noise, w, was 
assumed to be small (zero mean with variance of 1×10-5 ft2) 
therefore, because at 85000ft the air density is low and hence, 
the effect of air turbulence may be assumed to be negligible.  
 
The sensor measuring the change in height of the aircraft had 
added noise, v, which was assumed to have Gaussian 
distribution, zero mean and an arbitrary standard deviation 
(σs) of 0.03ft [10]. Hence, the variance of the sensor noise 
(σs

2) is 0.0009 ft2. No cross correlation between w and v was 
assumed. 
 
The estimator gain matrix, Eqn (50) of the Luenberger 
estimator was used again here to test its noise rejection 
capability. The HST with its AFCS was subjected to the same 
initial disturbance as before, i.e., 100ft in height. The 
response of the aircraft with the Luenberger estimator is 
shown below. 
 

 
 

Fig. 12 The response in height from the aircraft output, y, with a 
Luenberger estimator when subjected to an initial disturbance 

 in height of 100ft 
 

 
Fig. 13 This is the response from the same aircraft but from the Luenberger 

estimator output, yE 
 
From inspection, the estimator appears to have reduced the 
noise level in the system. The variance of y was found to be 
4.995ft2 but the variance of yE was 4.9943. The variance of 
noise rejected by this estimator was calculated to be 0.001ft2. 
Note that the variance of the sensor noise was 0.0009ft2 and 
that the variance of noise rejected by the estimator is close to 
this value. Fig. 14 shows a close-up view of the responses 
measured from the aircraft dynamics and that from the 
estimator together.  
 

 
Fig. 14 The responses, y (dotted) and yE (bolded) between 3s and 4s 

 
It has been shown here that the Luenberger estimator can be 
used effectively to filter noise in the AFCS for the HST.  
 
The response of the flaps control is shown in Fig. 15. When 
the disturbance was initiated, the response of the flaps 
appeared to deflect upwards to 30 rad and then rapidly 
deflected downwards to –5 rad. Then, the response appeared 
to settle with little noise effect from the sensor appeared on 
the response.  
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Fig. 15 Flaps response of the aircraft with the Luenberger estimator when 
sensor noise contaminates the aircraft output signal 

 
The large deflection in the initial part of the simulation when 
the HST was subjected to the initial disturbance can be a 
cause for concern because the angle of deflection could never 
physically be achieved by any flaps actuator system. 
Moreover, large angles of deflection will cause excessive 
aerodynamic heating to the flaps during hypersonic flight. 
Also, in this simulation, no limiter was used to limit the 
deflection of the flaps. A realistic limit to flap deflection 
during hypersonic flight is beyond the scope of this paper. 
However, it will be shown here that the flaps maximum angle 
of deflection can be limited whilst maintaining the aircraft 
dynamic stability. In the next simulation, the flaps have been 
arbitrarily limited to deflect between +45 degree 
(+0.7850rad) and -45degree (-0.7850rad). The simulation 
shows that the stability of the HST is still maintained even 
though the angle of deflection of the flaps has been restricted.  
 

 
Fig. 16 Aircraft height output, y, for aircraft with restricted flaps deflection 
 
The aircraft with the Luenberger estimator and the sensor 
noise problem was subjected to the same initial disturbance 
in height again and the response of the aircraft height change 
can be seen in Fig. 16. The response shows that even with the 
flap’s limiter used, the aircraft stability is maintained.  

 
 

Fig. 17 Estimator height output, yE, for aircraft with restricted flaps 
deflection 

 
The response of the estimator in Fig. 17 appeared to be the 
same as that measured from the aircraft output shown in Fig. 
16. To investigate visually if the noise has been reduced by 
this Luenberger estimator, responses from the aircraft output, 
y, and from the estimator output, yE, were plotted together on 
the same axis. This can be seen in Fig. 18. 
 

 
 

Fig. 18 The responses, y (dotted) and yE (bolded) between 3.34s and 3.47s 
 
From Fig. 18, noise reduction has occurred. The response of 
the flaps was investigated again. Because a limiter has been 
used to prevent excessive deflection, the flaps first deflected 
upwards to 0.7850 rad and then immediately deflected 
downwards to -0.7850 rad.  
 
However, the flaps fluctuate between approximately +0.2 rad 
(11.5o) and -0.2 rad (-11.5o) after the 1st second of simulation. 
The response had a rms value of 0.39rad. These values are 
less than those obtained when using the first Luenberger 
estimator. 
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Fig. 19 The response of the flaps when subjected to an initial disturbance 

 
The results of these tests show that the Luenberger estimator 
can be an effective aircraft state estimator as well as noise 
filter. The obvious advantage of using the Luenberger 
estimator, as a noise filter for HST flying at a range of high 
Mach numbers and heights, is that no prior knowledge of the 
noise is required. When data on atmospheric disturbances at 
those speeds and heights flown by HST are scarce, this 
technique has an added advantage. 
 

VII. CONCLUSION 
 
This paper has described how the highly unstable 
longitudinal motion of Hyperion can be stabilised by a S.A.S 
designed using LQR theory. This theory has considerable 
practical advantages for use in AFCS design since it 
guarantees closed-loop dynamic stability. The optimal 
control law requires that all the state variables of the aircraft 
be measurable. Since this is impractical, a Luenberger 
estimator was designed and included in the HST. The 
dynamics of the aircraft with the controller and the estimator 
operating were found to remain stable. It was found also that 
the response of the estimated state vector quickly reached that 
of the aircraft when the aircraft was subjected to initial 
disturbances or to command inputs. This experiment also 
examined the effect of noise on the aircraft dynamics. The 
aircraft output, y, was measured using some sensors but using 
these sensors introduced noise into the measured signals. 

Another source of noise might be atmospheric turbulence. 
The effect of sensor noise on the aircraft output signal, y, was 
significant. The tests showed that using a Luenberger 
estimator can result in a significant amount of noise reduction 
in the aircraft output signal. In designing a Luenberger 
estimator the characteristics of the process and sensor noises 
need not be considered a priori when calculating the 
estimator gain matrix. This is an advantage for HST work as 
the noise characteristics when the aircraft flies at high Mach 
numbers and altitudes are not entirely certain. 
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